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ON A M~THOB OF SOLVING A SHAPE OPTIHI~ATION PROBLEM IN PLASTICITY THEORY* 

I.N. KANDOBA 

The problem of calculation of the shape of a doubly-connected transverse 
section of an elastic homogeneous prismatic rod possessing maximum 
torsional stiffness is considered. The shape of its internal prismatic 
cavity is here assumed to be fixed while the area of the rod transverse 
cross-section is constant. 

Certain special properties are set up for solving the Dirichlet problem for the equation 
AU== i in a bounded closed domain of two-dimensional Euclidean space. 

Application of the results obtained in the construction of a numerical method of solving 
a number of optimization domain problems for elliptical systems is illustrated by an example 
of the problem under consideration. The paper touches on the investigations in /I, 21. 

We consider a plane doubly-connected domain CZfP*, P) of the two-dimensional Euclidean 
space Ra bounded by smooth non-intersecting Jordan curves P* EC1 and P=o (Fig.1). 

Let U(P,r;p) denote the solution of the boundary-value problem describing the torsion 
state /3/ 

-AU(T*, r; p)== f,p E CZ (I'*, I'): U (F*, r; p) = 0,~ E F 

u (r*, r; P) = c0nst tp E r*): f ~,u (r*, f: p) 1 dp 1 = mes (s2*) 
I-* 

('f 

where D,, is the derivative with respect to the direction of the external normal to the 
contour P* bounding the domain Q*,mes(Q*) is the Lebesgue measure of the domain Q*. 

We shall assume that Q(P*, P) is the transverse cross-section of the rod. Then the func- 
tion U(l'*,r;p) yields the stress distribution in this section that occurs under torsion of 
this rod. The torsional stiffness of the rod is here determined by the value of the functional 

J(U(F', T; P)) = s @(P)df 
Q(l’*, I-1 

up cp) = 1 vu p, r; P) 1, P E c2 (r*, r) 

We will introduce the notation 

C(r) = max {U (r*, r; p) I P E a (f*, rt). 1 fr) = (0, c(f)) 
rc = tP E sz (r*, r) 1 u tr*, r; P) = C, c E f UY 

3 (r) = {r, 1 c E T (nj, e (r) = l/x (r) 
x (r) = max ( I x (r, P) I I P = n 

where x (P, P) is the curvature of the contour P at the point p. By virtue of the assumptions 
made about the smoothness and closeness of the contour F the function x(P) is positive and 
bounded /4/. 

Fig.1 
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Fig.2 

421 



422 

We shall understand an e-neighbourhood of the domain G(r*,r) to be the domain 

where I'(e) is the extexnal component of the domain boundary 

n <r+, r (8)). 

A numerical iteration method /2/ was proposed for calculating the desired section shape, 
where the inequality (Theorem 1 in /2/) 

(2) 

is the basis of the method of 9 is a simply-connected contour. We note with respect to 6(r) 
that by virtue of the known 151' necessary optimality conditions in the problem under con- 
sideration here, it is natural to limit oneself to a class of domains Q ir*, T), on whose 
boundary I' the absolute value of the gradient of the solution of (1) is uniformly separated 
from zero. And for such domains S(r)>% 

A domain bounded by an inner contour I'* and an external TE where EES(O, 8(X')) fFig.2), is 
taken as the next approximation of the desired section farm at each step of this method. In 
order for an improvement in the quality functional to occur here, it is obviously sufficient 
that a E* E (0, s(r)l, exist far which the inequality O(P,r;&*)> RF*, should be satisfied, 
whexe K is a certain positive constant. 

The following theorem yields a qualitative interpretation to this last inequality in 
terms, substantially, of the necessary optimality conditions. 

Theorem 1. Let 52 (I-*, I-) be a certain doubly-connected closed domain from R2 that 
possesses the above-mentioned properties. Then for sufficiently small ~30 the following 
inequality holds: 

Cl> (1‘* ( 1‘; E) - @ (r*, f; 0) > K (I?) 8 2 0 (33 

where L= L(r) is the length of the contour r. 
Before proving the theorem, we will prove an auxiliary assertion. 

Proposition I. Let the function f{&, Z) E CQm (IO, 6] X Ia, bj) and, moreover ,$$I (e, Z) E Co8 *'-r (10, 

S] x [a, bj) (m EN, k = I$!, , . ., m - i). Then for any v ~[0,6]ase-rVf, (') (8, z1 -r(,) (y, duniformly in z on 
la, b] as e --t-9 for all k==o,i,&...,m--1. 

fndeed for any v ~[0,6] and all k == 0,1,2,. . .I m-i the following inequalities hold (eE 

[O, 61, P E Ia, 61): 
* 

By virtue of the assumptions made about the smoothness of the function f(e,x) and the 
Lebesgue theorem, we have 2$(e)-0 and [&(&a)[ ---SO as e-+v for all k==0,1,2 ,..., m-i. 

Hence the assertion ta be proved indeed follows. 
We will now prove the theorem. We introduce the sets P(e)=Sz(P, r(6)) \62lT',f), p, = 

P (Ej \ a (E), D (8) = 12 (r*, r (B)) \ Be,: p, = p @I \ D H (Fig.21 into the considerations. using Green's 

formula, the validity af the equation 
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A= 5 u (E; P) dp - s U (e; P) dp, B = $0 (G P) 4J k P) I dp I . 
p, J-4 r 

C = f U (8; P) f),u (E; P) I dp 1 
I- 

can be seen. 
Here Dn is the derivative with respect to the direction of the external normal with 

respect to P(e) (in the expression for B) and D(e) (in the expression for C) to the 
appropriate contour. 

By the definition of fe we have U(e; p) = c(e), p E Fe, where c(e)>0 is a certain constant 
which depends only on f'*,r,E and S. By the definition of P, and D,, the inequalities u (5 
P) > c (8) and (I (a; 9) Q c (e), respectively, hold for any points p =PE and LED=. And since 
by definition @(I?*, I'; e), mos (P,) = mes (D,), we have A >c((~)mes(D,) 20. We hence obtain that 

O(I”, I-; E)--(I-*, I’; O)>,B--c(@j P(E, p)Idpl= B--(djcpWldpi 
re I’ 

(41 

By the definition of 6(r) and r (8) a single point Gil', can be set in correspond- 
ence with each point P@=f such that the points p and P (8) lie on the segment T (Pv P (e)) 
connecting them and perpendicular to the contours r and r (E) at the points corresponding 
to them. 

We have from the formula of finite increments 

u (E; P) = (VU (a; po), P - P (8)) e, pa E T (P. P (E)) 

whence by virtue of the continuity of U(e;p) in 62 (JJ*, r (e)) it follows that U(e;p) = (D,U(e;p) t 
9 (e, P)) 6, where V (6, P) is a certain function continuous in p on r, where rp (E, p) - 0 uni- 
formly in PDF as e-0. Therefore 

B = 8 S ((%G (e; PV t u (8, PI) I dp 1 (5) I 
a @, Pf = Fp (&a P) Da k PI 

For convenience we introduce a new s, t coordinate system associated with the reference 
line r (Fig.2). The coordinate of the point p E P(e) UD (e) is measured along I? from a 
certain fixed point 0, =r to the point 0, of intersection of r with the internal normal 
t0 r with respect to Q(r*,f) that passes through the point p. The coordinate t equals the 
length of the segment 0%~ taken with a sign which depends on whether the point p belongs 
to the domain Q(f*,r) (the plus sign) or not (the minus sign). 

Then for sufficiently small a>0 the contour P in s, t coordinates can be given by 
the equation t = p (e, s), 8 ea IO, L (f)l. For each e>O the direction of traversal over the reference 
contour r from the point 0, to the point 0, is here selected such that 

S x (r, P (s, 0)) ~2 (e, P (8, 0)) I do 1 = 

f r 
x (r, 0) 3 (e, 4 ds 2 0, x (r, 81 = x ir, P (I, 0)) 

Here and henceforth the itegration with respect to s is between 0 and L= L(r). 
Consider the expression 

G (a) = L-I S (U (a; P (s, P @, SH) - u (8: P (s, -8))) dd 

Obviously G(e) = c fe). On the other hand, by applying the finite increment formula to the ex- 
pression under the integral sign, we obtain 

c(e) = L-I SF (e, S) (e + p (e, s)) ds 

F (5 6) = &U (6 P (6 0)) -k Y (e, P (s, 0)) 

where v (e, p (s, 0)) - 0 uniformly on r as E -0. The estimates 

F (e, S) < e-'c (e), vs E IO, L (I?)]: p (e, s) > 0 
P (a, _4 > a-xc (8). vs E to, L u-g: P fe, 5) < 0 

hold here. 
Therefore 
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s F (e7 4 P (% 4 ds < e-Q (8) s P (% 4 dJ < 

e-‘c (8) s (P (8% 4 + $x (I-, s) pa fe, 4) cfs = 
ix% S) 

e-‘c (e) s s (1 -, L tx (IT, s)) dtds = E-Q (e) (mes (De) - mes (P,)) = 0 

cl 

Hence c (8) <L-Q 'j F (8,s) ds, and taking account of the relationships (4) and (5) we obtain the 

estimate 

By virtue of Lemma 7 from 161 

u (5 p (s, 0)) = u (e, 4 E c-w ((0, 6 (r)l x 10. L (r)l) 
D,U (8, .o E ~0~0 (~0, 6 (r)l x ~0, L (r)l) 

The inequality (3) follows from Proposition 1 and inequality (6). We obtain here from 
the Halaer inequality that K (r) 2 0. 

Proposition 2. Let f(z) E 0 [u, bl. Then to satisfy the equality 

it is necessary and sufficient that ~(z)~con~t.~~la,b~. 
It can be seen that the difference between the left and right sides of (7) equals /jf(x)- 

=I1 L&o, bl' where K = (b - a)-l <f> from which the assertion to be proved indeed follows. 
In conclusion, we note certain applications of the results obtained. We assume that the 

form of the rod transverse cross-section occupies a domain Q (r*,r) and is not optimal, i.e., 
max ((P (P) I P E ri - min Irp w I P E r) > 0 /5/. Then it follows from inequality (2), Theorem 1 and 
Proposition 2 that a E>o exists such that the rod whose transverse section occupies the 
domain Q(P*,l?) possesses a greater torsional stiffness than a rod with the initial form of 
transverse section. Having been given a certain initial domain and realizing the selection of 
such an E each time, a maximizing sequence of domains can be constructed in the domain 
optimization problem under consideration here. It can be shown that a decrease of the residual 
of the absolute value of the gradient of the solution of the problem (1) occurs along this 
sequence on the boundary of each succeeding domain. 

Analogous assertions (to the accuracy of the problem formulation) hold even for problems 
of minimizing the thermal flux through the wall of a prismatic tube on whose transverse cross- 
section an isoperimetric constant is imposed. 

The author is grateful to YU.S. Osipov and A.P. Suetov for his interest and for useful 
remarks. 

REFERENCES 

1. ACKER A., Heat flow inequalities with applications to heat flow optimization problems, SIAM 
.I. Math. Analysis, 8, 4, 1977. 

2. KANDOBA I.N., On a form optimization algorithm in elliptical systems, PMM, 53, 2, 1989. 
3. LUR'YEA.I., Theory of Elasticity, Nauka, Moscow, 1970. 
4. BRUCE J. and GIBLIN P., Curves and Singularities, Mir, Moscow, 1988. 
5. BANICHUK N.V., Optimization of the Form of Elastic Bodies. Nauka, Moscow, 1980. 
6. KREIN G., Behaviour of solutions of elliptical problems during domain variation, Studia 

Math., 31, 4, 1968. 

Translated by M.D.F. 


